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Course topics and dates

Static games
Zero-sum games
Potential games
Dynamic games, DP principle
Dynamic games, DP examples in games

@A Dynamic games, LQ games/brief Markov game
Convex games, Nash equilibria characterization
B Convex games, Nash equilibria computation

B Auctions

Bayesian games

Learning in finite action games

=

—

Extensive form games
Feedback games in extensive form

—

Final project presentations

=
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Motivation - What are multiagent systems?

RUE

Smart Grid
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Elements of a Game

Definition
Game theory: mathematical models of decision-making of multiple players
Several things are needed to characterize a game:

m The players are the agents that make decisions

= The actions available to each player at each decision point

= The information structure specifies what each player knows before making
each decision, in particular with respect to other players’ decisions

= The cost function for each player, which depends on all players’ decisions
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Let’s play: the Prisoner’s dilemma
Two suspects interrogated by police about a crime, in separate rooms.

m |f both suspects confess, they each serve 5 years in jail

= |f none confesses, police puts each of them in jail for 1 year (evidence for a
less serious crime)

= |f one confesses, she gets free and the other serves 10 years in jail

Activity - get in groups of three and do the following:
1) Identify the components of the game:
- players, actions and information of each player, cost for each action
2) play the game as follows:
- student 1: police, students 2,3: prisoners
- each prisoner informs the policé)of their decision privately
- police informs them about their prison sentence
3) keep playing the game for 5 rounds
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Matrix representation of a game

For games with
= two players Py and P,
m 3 finite number of actions (strategies)
r={v,....,ym}5L Xr={o1,...,on}
® simultaneous play. What does each player know?
m costs: Ji (1, 07) and Ja(vi, o7) players are minimizing their respective costs
we often adopt the following compact representation:

confess silent

T LGy G e asln § e= Y

m Player 1 is the row player, Player 2 is the column player
m Each row/column corresponds to a possible action

= Each element of the matrix corresponds to the resulting costs for the two
players, as an ordered pair (aj, by)

aj =Ji(v,01), by =Jo(vi,09)
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Matrix games

The above definition can be extended to N players, by defining the set of actions of
each player and the cost function (utilities) of each player.

Matrix games or equivalently normal form games, strategic form games:
® players act simultaneously
m players don’'t have knowledge of each other’s choice of actions

Strategy: a complete description of how to play the game
m equivalent to control policy/law in control theory or decision rule in optimization

® in matrix games strategy and actions are equivalent, and the terms are used
interchangeably (not the case in extensive form games/dynamic games).
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Prisoner’s dilemma applications

m Prisoner’s dilemma has become a model of how individuals
cooperate/compete when there is no possibility of binding agreements
m Variants of the game have been used to analyze and understand

>

\{

politics: e.g. international climate negotiations for countries cutting carbon
emissions: both countries are better off collectively if they mitigate, but they are
individually better off if they pollute.

economics: e.g. firms pricing their products

biology: e.g. organisms competing for resources

COVID-19: e.g. states adopting lock-down
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What is a good solution concept for the game?

What is a good model for decision-making in multiagent scenarios where no
binding agreement is possible between players?
depends... let’'s make some assumptions

m each player has common knowledge of all players’ cost functions

m rationality: each player wants to minimize her cost (maximizer her profit)
» the above notion of rationality has been widely accepted
> in single agent decision-making it implies action ~; is preferable to action s, if
J(11) <J(r2)
> in multi-agent decision-making, not so easy to generalize the above: J;(v, o) and
each player cannot choose the action of other players

Based on the above, let’s start by thinking what would the players do/not do...
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Strictly dominant and dominated actions

ayy di2 ... Aain
a

A= 21
ami ... ... @mn

Without loss of generality, lets’ consider Py, choosing rows:
m action / is strictly dominant action if

ajj < agj, VjE{‘],‘..,n},Vk;ﬁi

> in words, row / is element-wise strictly less than the other rows
» rational player will play strictly dominant action
® gction k is strictly dominated action if 3/
aij < ayj, Vj€{1,...,n}

> in words, there is some row i, that is strictly lower than row k element-wise
» rational player will not play strictly dominated action
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Action dominance to determine game outcome

Determine the outcome of the game by identifying strictly dominant actions:

confess silent
confess (5, 5) (07 10)
silent (10,0) (1,1)

Determine the outcome of the game by removing strictly dominated strategies:

confess silent suicide

confess (5, 5) (O, 10) (5, 20)
silent [ (10,0) (1,1)  (0,20) ]
(20,5) (20,0) (20,20)

suicide

Observe:

m rationality leads to players playing strictly dominant strategies (in prisoner’s
dilemma individually rational behavior don’t lead to jointly (socially) optimal
decision)

m rationality and common knowledge of the game leads to elimination of strictly
dominated strategies

m Next: strictly dominated strategies may not exist
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Example: Autonomous cars
m Actions: each car can Remain (r) or Swerve (s)
m Cost function of each player J;(.,.), fori =1,2

1: Remain
2: Remain

(s, r) = 100
J(s,r) =100

1: Swerve
2: Remain

£ I

1: Remain
2: Swerve

1: Swerve
2: Swerve
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Think/Pair/Share: Action dominance
Are there any dominant or dominated actions for either of the players?

g Ji(r,r) =30 g Ji(r,s) =30
‘% : h(r.r)=0 Q : J(r,s) = 10
I 15 I &

| [ H
‘ ! t L1 | 1 Remain g 1: Remain
A 2: Remain A 2; Swerve

f (s, r) = 100 f Ji(s,5)=0
% 128 3:100 % Lf?,i}:m

ooy

1: Swerve H 1: Swerve
2: Remain H 2: Swerve

Write the game matrix. Discuss whether dominant/dominated actions exist

" rven Suer A
~mar ((300) (3,0 ThSest Ses
ngo 3\7\::\-’ C\sm:'\u-\'b’
Sulcvv\ ((m(w) (0‘ “ L\Q'V\N\KJ(J RQL@/"
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Weakly dominant and dominated actions

asr  age ain
a

/q — 21
ami eee ... @mn

Without loss of generality, lets’ consider Py, choosing rows:
m action / is weakly dominant action if

aj < ag, VYje€{l,...,n},Vk #iand
ajy < ag, forsomele{1,....,.n}Vk#i

> row / is at least as good as other rows and has at least an element strictly lower
than other rows

m gction k is weakly dominated action if 3/

aj < ag, Vje{l,....ntand
ajy < ay, forsomele{l,...,n}

> there is some row /, that is at least as good as row k element-wise, and row i has
at least one element that is strictly better (lower) than row k
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Iterated elimination of weakly dominated actions
Players are maximizers

L
T (1,1) (OYO)
M [(1,1) 2)1)

I

‘Pc/ P : T 'S Mkkb Q‘DM:'\MJ-«J bJ ”

e mov
£a. P2 - L " M,\k(j Aommulnj ‘:j R
oulcome . ( 2,1)

'Pw,loq_‘_?_c_ W‘emlcj (‘[DM\AMJ-v(J loJ r

Fr P2 0 R s weakly clomedd by L
oul—c"‘c J (‘/[)

Observation:
= the order of removal of weakly dominated actions will lead to different outcome
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Exercise 1: Iterated elimination of dominated actions
Consider a game where B = —A, both players are minimizers, and A is equal to

Are there any strictly/weakly dominant actions for either of the players?
Are there any strictly/weakly dominated actions for either of the players?
> |f so, remove the dominated action and repeat the above for the reduced game

= Repeat the above exercises for the case in which B = A.

Can action dominance lead to prediction of game outcome?
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Summary of action dominance

= Rational players will play dominant actions if they exist
» dominant actions do not usually exist
= Rational players will not play strictly dominated actions

> can iteratively remove strictly dominated actions to reduce the game
> the reduced game might still be large
» strictly dominated actions do not always exist

How else can we define a solution concept for our game?
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Security levels and strategies

The security level of P, is defined by

Ji= min max _ &j
ie{1,....m} je{1,...,n}

J1 minimizes the worst-case cost of P,

The security strategy of P, is defined by

i€ argmin  max aj
ie{1,....,my J€{1,....n}

Remark
m Security levels and strategies depends only on the players’ own payoff matrix.
= Assumes the other player is completely adversarial, which is often not true.
m |t is the framework used in robust optimization/robust control.
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Security levels and security strategies

Compute the security strategies for
® prisoner’s dilemma

confess silent 27_ = 5
confess |: (5,5) (0710) :| .

silent
. | ‘%1\("9"2' gsl

(10,0) (1,1)

remain swerve /U_ _
— remain [ (30,0) (30,10) :| + = lo
d, = 30 swenve | (100,100) (0, 10)
1 r( A O
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Summary of security strategies

= Always exist. why?

m Easy to compute.. A simple Matlab command_g
barJ1i= min(max(A)), barJ2 = min(max(B)

® Are they consistent with rationality orene=segret-aasumpiion?
remain ve

remain (30, 0) 30,10
(100,100)  (0,10)

swerve
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Nash Equilibrium (informal definition)
m A pair of of actions (v*,0") is a Nash Equilibrium if no player can do better by
unilaterally changing her/his decision.
= Both players show no regret after observing the outcome.

Confess Stay silent

Confess (57 5) (0, 10)
{(10,0) (1,1) }

Stay silent

What is the Nash equilibrium strategy in prisoner’s dilemma?

‘,e‘“% (Conef . rgha (Q\ ND‘S/\ Qﬁbl")pr/\._

History
= Nash equilibrium concept proposed in the work of mathematician and
philosopher, Antoine Augustin Cournot for analyzing economic firms’
competition (we will see Cournot games in Convex game lecture)
= John Nash, mathematician, generalized the concept to any multi-player
interaction
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Nash equilibrium (formal definition)

Given a static two-player game described by the two payoff matrices A and B (for

P; and P, respectively), we say that the pair of actions i* € {1,...,m} and
j* € {1,...,n} are a Nash Equilibrium if

ai*j* Sakj* Vk:‘].,m
and

biej» <brxk Vk=1,...,n.

In general terms, v* € ' and ¢ € X are a Nash Equilibrium if
Ji(y'0") Sdi(y,07) Vyerl

and
J2('7*7U*) < Jz(v*,a) VYo e X
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Best-response map

Given a pair of strategies (v, o) in T x X, we define the best-response maps:

(v,0) = R(7,0) = (Ri(0), Rz(7))  where

Ri(o) ={y €T | Ji(v,0) < Ji(y,0), V¢ €T}
Rao(v) = {-n 2t Jav.o0 < T2 (V- o, ¥ f@ﬁx

® R(y,0)is set-valued: R: T x ¥ — 2"**>
&Y M XimlzZer ¢

(7, L) e RCTY

= Example: P(cz?zvc
N osh ’—{Qr 5.1 (6.2
ex<uilbr i v | @7) (9.4) (3,6)]
P’I B (3,0) (9,6) (2,8) 772_
R, (L) = (T3 Ro(T) = ¢ L}
R, CC) ~ {r B} R,cr) = | RY
R,ce\ ={ R}

Ri(RY >~ {7/



Nash equilibria are fixed points of best-response maps

m best-response map, R = (Ry,Rz) : [ x ¥ — 2M**

Ri(o) ={y €T |Ji(v,0) < Ji(v,0), V¥ €T}
Ra(v) ={o € £ | Jao(y,0) < Ja(7,0"), Vo' € £}

m (v,0) € T x X is a fixed point of the best-response map:
(v,0) € R(y,0)
m Nash equilibrium ~* e T'and o™ € %:

Ji(v"07) < di(y,07) Yy erl
Jo(v",07) < de(v",0) VoeX

(Y',D‘h} (s o Noch egulbru, t'g gcf\lj:ﬁ

Aoy a faed Pom}- KB}'&L«J-MPM«MP
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Observations - Nash equilibrium (NE) solution concept

Nash equilibrium rationality properties:
= Each player optimizes her cost given actions of other players
» strictly dominated strategies cannot be Nash equilibrium (verify this)
> NE is a subset of set of actions remaining after iterated elimination of strictly
dominated strategies (this requires a formal proof..)
= Dominant strategies if they exist are Nash equilibrium

> NE: optimal action given what others are doing; dominant strategy: optimal action
regardless of what others are doing
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Can Nash equilibria predict the outcome of a game?

Consider the autonomous car example:

30 30 0 10
A:{wo 0} 32[100 10}

= Nash equilibria (no regret strategy)
> (w outcome (30, 0)
> (Swerve, Swerve), outcome (0, 10)
m The two Nash equilibria are not interchangeable, that is, (Remain, Swerve)
and (Swerve, Remain) are not Nash equilibria.

Which strategy will the two cars play?
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Exercise 2: the Stag Hunt'
Two hunters have to choose their prey between stags and hares.
= [f they both go after the same stag (D days of food), they will succeed.
= One hunter alone will not be able to hunt the stag
® One hunter alone can hunt a hare (R < D/2 days of food).

For the parameterized game, answer the following questions:

1) Are there dominated actions? 2) What are the security strategies for each
player? 3) What are the Nash equilibria?

Stag Hare

Stag

Hare

'old story that appeared in Jean-Jacques Rousseau’s Discourse on Inequality, 1775, read more here
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Multiple Nash Equilibria

Multiple NE

Assume a game has multiple Nash equilibria, with different outcomes.
Can we predict what NE strategy will each player play?

Are some Nash equilibria “preferable”?
= Example 1: (1,2) and (—1,0) |->lf>«a,e't’ och unde. 2 Ne
= Example 2: (1,0) and (—1,2)

Partial order
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Admissible Nash equilibria

Admissible Nash Equilibria

A Nash equilibrium (v*, 0*) is admissible if there is no other Nash equilibrium
(¥, ) such that

J1(:/~&) < J1(A/*7U*) and Jg(”%&) < Jg(’y*,a*)
with at least one of the two inequalities strict.

Note: A strategy set (1°, o) is Pareto optimal if there is no other strategy satisfying
the above two inequalities, w1 one Bz‘_[) sh o

r_\,

On existence of admissible Nash equilibria

What are the admissible Nash equilibria in Stag hunt?
Is there an admissible Nash equilibrium in the autonomous cars?
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Example: autonomous cars

hard to predict the game’s outcome
= Multiple admissible Nash equilibria which

> have different values
> are not interchangeable

Few options available:
= Both Players play their security strategy
> (remain, swerve), with outcome (30, 10) (worse than both NE...)

= Mechanism design, i.e. change the Players’ costs to induce a unique
admissible Nash equilibrium
» example: a fine if you cross lanes and hit another car
» example: sharing the cost of hitting the deer
» Could either of the above strategies help resolve the non-uniqueness and lead to a
“good” Nash equilibrium?
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Game: Rock, Paper, Scissors
Pair up with your colleague and play Rock, Paper, Scissors for 10 rounds!

Smssors
beats paper @

Now, consider only one round of the game.

Rock Paper Scissors

Rock -(Q'D\ (‘l‘l\ (l;“n-

A = Paper (],*l] f(), O‘) ("\, |\
Scissors i (—l, [\ ( \ '_‘) ( Q ' 0\
Think/Share/Pair Plageri <t maximizers

= Write the payoff matrix for a single round of the game
1: P wins, -1: Py wins, 0: draw , £ uvite vewry N
= Are there dominant / dominated actions? s o

anr row [clema WW( chwtb
level

= What are the security strategies?
® |s there a Nash equilibrium? a5 4
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Recap

= Nash equilibrium definition and properties
= Nash equilibrium may be

> unique (prisoner’s dilemma)

» multiple admissible NE (autonomous cars)
> unique admissible NE (stag-hung) &

> not exist (rock-paper-scissors)

What is a rational solution concept that can exist in all games considered?
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Mixed strategies
= A mixed strategy is a probability distribution on the actions

i i
Fr={m,...,mp — y=1;: r={or,...,on} — z=

'm Zn
ye)}—{y|zy;—1,y;20} ZEZ_{Z|ZZI_17ZIEO}
i i

Pure strategies still exist within the mixed strategy space.

= Example
-0 7

pure strategy i = y=\yi=1| €.
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Expected outcome

Expected outcome for player 1

J(v,2) =D aPlyi, 0] = Y aiPlulPloj] = > _apyizi =y ' Az
i i i

Similarly, defined for player 2. There is a slight abuse of notation. Do you see it?
= expected outcome of the game

hy.2) =) > yzay=y Az

i=1 j=1

Jo(y,2) = yizby =y Bz

i=1 j=1
Multiple interpretations:

m repeated game: think of rock-paper-scissors

= mixture of pure actions (if the game allows that)
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Exercise 3: Properties of mixed strategies and payoffs

m Let X C R". Write the definition of X being convex.
¥ o, e Y, ) elof) ?\Xn'*(‘—)\\xzex
= Show that the set of mixed strategies ) is a convex sets (clearly, same goes
for Z).

m Letf: X — R. Write the definition of f being convex.

Ve €%, Aelo] f ( nwe (-%) € MO0
[!—A)F(xz)

= Show that J;(y,z) = y " Az is linear in y for each fixed z and hence, it is
convex in y for each fixed z.
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Mixed Nash equilibrium

Given a static two-player game described by the two payoff matrices A and B (for
P and P», respectively), a pair of mixed strategies y* € ) and z* € Z is a mixed
Nash Equilibrium if
() Az" <y'Az" Wyey
and
(v)'Bz" <(y*)'Bz vzez

In general terms, y* € Y and z* € Z are a Nash Equilibrium if

Ji(y",z7) < di(y,z") Yy ey

and
bo(y",z2") < J(y*,z) VzeZ

Remark
Not easy to compute - even in 2-player case!
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Certifying Mixed Nash Equilibria
To certify that a given pair of mixed strategies is a mixed Nash Equilibrium, we
can perform a finite number of checks.

Propositi A o => b
pair of strategies (y*,z") is a Nash equilibri

if and only if

Ji(y*,z") < Ji(y,z") V pure strategy y

Jo(y*,z") < Ja(y*,z) V pure strategy z

Proof.

= follows directly from the definition of Nash equilibrium. A :Db )

b =DA oIt ’iﬁb

b g, e € s At (7
® conaicler any g & _\J leven

37/49



How to compute mixed Nash equilibria

intractable: non-convex problem even for 2 player games
See Lecture 10 in Hepsanha's book. However, in certain cases, we can solve a
system of linear equations for computing Nash equilibria:

Lemma - on characterizing completely mixed Nash equilibria

If y* and z* are completely mixed Nash Equilibria (i.e., none of their
elements are zero), then they need to satisfy
o\l elemente

"
Az* =p*1 elR '\ S}V\C'H:] Pot:lv&
y)'B=g1'cp

1Ty" =1,

1TZ*=1.3 quhahnl\\:} c\\&lv\LMJ,\

Suppose that y*, z* satisfy the above linear system of equations. If
yF>0,i=1,...,n,z" >0,j=1,...,m, then (y*,z") is a mixed Nash
equilibrium.

38/49



Completely mixed Nash equilibria proof

We will prove part 1 of the Lemma above. Part 2’s proof can be found in Theorem
10.1 in Hespnaha'’s book.

Proof of Lemma, part 1: Let (y*,z") be a completely mixed Nash equilibrium.
Then,

——
i-th entry of Az* € R™)

*\ T * . T * . *

") Az _}r/'neulr}y Az _mymzi:y, (Az™);
Suppose one entry of the vector Az*, call it j is strictly larger than any other one.
Then, clearly, we would have to choose y; = 0 in the minimum above. This implies
that the Nash equilibrium will not be completely mixed.
Hence, to have a completely mixed Nash equilibrium, all entries must have the
same cost, or equivalently, there must exist a p* € R such that Az* = p*1,, where
1, € R" is vector of ones. Same reasoning applies to (y*)"B.
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Exercise 4: Computing mixed Nash equilibria in matching pennies

ALt
Consider the matching pennies game? ~\ |

Left Right
L [ (1,-1) (=1,1) Q = -t
Right (-1,1) (1,-1) .
. - . ,
Compute the mixed Nash equmbrla. 24 > {2‘ ,B

A= =P

Y E ]

B ][< ﬂ&*[ﬁ' ﬂ’J 9+, =1

= * _ v LI
Z.“ 2, "‘(/2. ’ ‘j‘ "j'z p* }c\“ =D

2This is also known as penalty kick. The penalty kick would have slightly different numbers for each
action based on actual penalty kick data! see Preface of Karlin & Peres book.

n: g"'
1)

.
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Exercise 5: Computing Nash equilibria in a coordination game
A couple agreed to meet after work but hasn’'t decided where. The woman (Player
1) likes to see a soccer match and the man likes to see a ballet. They both prefer
to attend the same event to not. The rewards are given below:

soccer ballet
soccer (37 2) (1 s 1 )
ballet (0,0) (2,3)

m |dentify the pure Nash equilibria. Are they interchangeable? Is there an
admissible Nash equilibrium?

= Find the mixed Nash equilibrium. What is the probability of the couple
attending the same event?
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Existence of a Nash Equilibrium

John Nash’s theorem, 1949
A mixed strategy Nash equilibrium exists in every finite action game.

The proof uses a fixed point theorem: let X C R"” non-empty, convex compact.
x

Brouwer’s Fixed Point theorem (1910)
Let f : X — X be continuous. Then, f
has a fixed point.

Kakutani’s Fixed Point theorem (1941)
Let R: X — 2% be a set-valued map
with a closed graph such that Vx € X,
R(x) is convex and non-empty. Then, R
has a fixed point.

Cf8:2) R(z.2Y)
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Closed sets, bounded sets, compact sets

A subset X c R" is compact if and only if it is closed and bounded.
= Write the definition of a closed set.

x cet s c loce ,12 4+ conkeme all P s ﬂm,—) Fom]q

= Write the definition of abounded set. ¥ ¢ R" < Low\clec(
F In>o0 s+ fxllcn V¥VxeX

m Show that ), Z are compact. \- a,\‘a norm w (RN

L= Show clowd 8 bouwctad
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Properties of the best-response map for mixed strategies

See details in Fudenberg & Tirale, Theorem 1 1 in Sestion—-3.1
Let R: Y x Z — 2Y*Z be the response map corresponding to mixed strategies.

= Why is R(y, z) non-empty? M “% o

co~h
P R(z) = avgm WY Az TS
L} 3 \ —_—
e over o

m Show R(y, z) is convex for every (y,z) € Y x Z. COMPac-}- s:“‘

c'd|r'2|’) ’ [Lélf?g_‘\ r (\GCO,\'} C‘\Ob\) :’>MII\IMUM
°/ ‘s CLC}\ICV!' J

R (PN (‘dr’?.\“' ("—’"\) (U'Zf'zz) { A RCB.I‘E\—*(\..,\\ Qc:j %
= Verify that R(y,z) has aclosed graph. Red+ X = Y xZ_, ‘

Groph L R (); 6= { ("(a)EX*X s aeE[x)l

)

Show A 3 Sesoven @ {(:5:,‘3)\’(2—& Hhod converges
to D\Pom'} (:(,\-j),ﬂc,\ (%.3) € PAS
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Fixed point of the best-response map

We can apply Kakutani’s fixed point theorem and conclude that the
best-response map

(v,2) = R(y,2) = (R:(2), Ra(y))

where R, R, are player 1 and 2’s best-response maps in mixed strategies, has a
fixed point.

By definition of R(y, z), its fixed points correspond to mixed Nash Equilibria. O
N players

The proof can be repeated almost identically for N player games, by extending the
corresponding definitions of mixed Nash Equilibrium.
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John Nash’s Ph.D. thesis

In 1949, John Nash provided a one-page proof that games with any number of
players have a mixed “Nash equilibrium” in his 27-page Ph.D. thesis. He used
Brouwer’s fixed point theorem in his thesis and Kakutani’s fixed point theorem in
his published paper in 1950. The approach using Kakutani’s theorem is more
general as we will see in the lectures on convex games.

In 1994, John Nash was awarded the Nobel Prize for this pioneering work.
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Summary

m Key elements of a game, and how to recognize them
= How to formalize static games in matrix form

m Strategy dominance

m (Pure) security levels and strategies

(Pure) Nash equilibria
Multiple Nash equilibria
Admissible Nash equilibria
Mixed strategies

Mixed Nash equilibria

Certifying and computing mixed Nash equilibria

Nash’s Theorem: existence of mixed Nash equilibria
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Further readings

To deepen your understanding:
m Chapters, 1 and 10, Hespanha, Noncooperative Game Theory
m Chapters 4 and 5, Karlin and Peres, Game Theory, Alive
m Chapter 1, Game theory, Fudenberg & Tirole
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